Category Archives: Colin Jahoda

3D Culturing of Hair and Dermal Papilla Cells

When it comes to hair cloning and tissue engineering, 3D culturing related research is booming. The 3D culturing of cells can occur via scaffold techniques or via scaffold free techniques such as 3D spheroids.

Update: March 11, 2022 — 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration. This new approach from Chinese scientists permits the controllable formation of self-aggregating spheroids of dermal papilla cells. It also leads to the initiation of epidermal-mesenchymal interactions, which results in hair follicle formation in vivo.

Recent Studies on 3D Culturing of Hair Cells

Over the past few months, a number of studies have come out in relation to 3D culturing of hair cells (in particular, dermal papilla cells). Below, I list them from most recent to oldest.

July 27, 2020 — A new study from North Carolina State University compared 3D versus 2D cultured dermal papilla cells. The 3D dermal papilla cells in a scaffold performed best in regrowing hair. More interestingly, the scientists also studied microRNAs (miRNAs) in dermal exosomes from both the 2D and 3D DP cells. The team then identified one (miR-218-5p) in particular as a key promoter of hair growth. Per lead study investigator Dr. Ke Cheng, the best part is that MiRNAs can be developed into small molecule-based drugs, including creams. A much easier feat in comparison to cell growth, expansion and injection.

June 16, 2020 — Several people in the comments mentioned a new paper titled: “Generation of human hair follicle organoids in vitro and ex vivo by co-culture of primary human hair matrix keratinocytes and dermal papilla fibroblasts”. One of the co-authors of this paper is Dr. Ralf Paus. This experiment succeeded in human scalp skin and not just in mice (h/t reader “Joe”).

April 28, 2020 — Culturing human hair follicle dermal papilla cells in a 3D self-assembling peptide scaffold. The results of this study suggest a new potential 3D culture platform based on a self-assembling peptide scaffold called RAD16-I. This method successfully created hair follicle dermal papilla cells.

3D Culturing Hair Follicles
3D Culturing of Hair Follicles and Dermal Papilla Cells. Source: Wiley Online Library.

April 15, 2020 — A new paper on reconstructed human skin with working hair follicles. Co-authors include the renowned Dr. Roland Lauster and Dr. Gerd Lindner.

The results section has an interesting part titled “Comparison of cultured neopapillae spheroids with scalp hair dermal papillae”. Several of the images of the 3D cultured hair follicles are shown on the right. Neopapillae spheroids were constructed from expanded self‐aggregating dermal papilla cells.

December 26, 2019Tissue engineering strategies for human hair follicle regeneration. This review analyzes the various research approaches being developed to tackle hair follicle bioengineering. Lots of discussion about 3D culturing, various types of scaffolding and dermal papilla trichogenicity. For the scientifically inclined readers, Table 1 is quite useful and I am pasting a small part of it here:

Hair Follicle Tissue Engineering Approaches

December 13, 2018 — An important paper with Dr. Angela Christiano, Dr. Colin Jahoda and Dr. Etienne Wang as co-authors. They created 3D-printed hair follicle molds using a biomimetic approach. I covered this work in detail in my 2018 post on biomimetic tissue engineering of hair follicles.


October 22, 2013

3D Spheroid Culturing of Dermal Papilla Cells

This week seems to be full of interesting developments, but the below news made all the global headlines.

Dr. Angela Christiano (Columbia University — US) and Dr. Colin Jahoda (Durham University — UK) just released their latest findings on hair follicle culturing. Their main discovery involves using a “hanging-drop” method of 3D spheroid culturing of dermal papilla cells. As opposed to a regular 2D petri dish culturing method that had failed in the past.

This new 3D method has shown significant success. However, it is still a years away from being able to be used in humans with consistent and safe results.

Media Coverage

For more, see this video with the hair follicle blessed Dr. Christiano. Edit: Per the Fox News video in the link at the bottom, it seems like she wears a wig and suffers from Alopecia Areata.

An audio interview from BBC with Dr. Colin Jahoda

And now some other links to their findings:

Article from BBC

Article from New Scientist

Article from NYtimes

Article with Video from Fox News

Tissue Engineering of Hair Follicles using a Biomimetic Approach

In 2004, Aderans Research Institute filed a patent (granted in 2009) titled “Tissue engineered biomimetic hair follicle graft“. The invention entailed an improved scaffold that would mimic the architecture of the native hair follicle. The ultimate aim for this invention after further improvements would be hair multiplication. However, for a number of reasons, the much hyped Aderans liquidated its research institute in 2013.

In the above patent filing, the most cited author when it comes to reference material was Durham University (UK)’s Dr. Colin Jahoda. To be specific, 10 of his past papers are cited: ranging from this one from 1981 to a 2001 paper on trans-species hair growth induction. The industrious Dr. Jahoda has published numerous other major research papers since 2001, some of which I have covered on this blog in the past.

Biomimetic Engineering of Human Hair

Biomimetic Tissue Engineering of Hair
Biomimetic engineered human hair growing on a mouse.

Several days ago, a groundbreaking new research paper was published in Nature Communications. The title of this paper was: “Tissue engineering of human hair follicles using a biomimetic developmental approach”. Very similar to the title of the earlier mentioned patent.

Moreover, one of the main co-authors of this latest 2018 work is Durham University’s Dr. Colin Jahoda. The other authors are all researchers from US-based Columbia University’s Department of Dermatology, led by the renowned Dr. Angela Christiano.

The conclusion of this research is one that should make everyone enthused:

“The ability to regenerate an entire hair follicle from cultured human cells will have a transformative impact on the medical management of different types of alopecia, as well as chronic wounds, which represent major unmet medical needs.”

Note that this latest paper was submitted in May 2018, accepted in October 2018, and finally published in December 2018. So the Jahoda, Christiano et al. team’s current research is at least seven months ahead of what is described in the paper.

3D-Spheroid Cultures to 3D-Printed Molds

I have covered 3D-spheroids, 3D-culturing and related structures and scaffolds (to help brand new hair follicles grow from scratch) numerous times. This area of research has seemed to be the holy grail for scientists trying to succeed at hair multiplication. Just like DHT elimination and restarting Wnt/β-catenin signaling have been the holy grails when it comes to preventing further hair loss and regrowing existing miniaturized hair.

Numerous scientists such as Dr. Colin Jahoda and Dr. Takashi Tsuji have focused on research 3D-spheroids and 3D-culturing of dermal papilla cells to grow new hair follicles for many years. However, in this latest study, it seems like the scientists have turned there focus to 3D-printing (or 3D-bioprinting). They even give the name of the specific 3D printer that they used during this experimentation.

The Jahoda, Christiano et. al team created 3D-printed hair follicle molds as the key component of the experiment. The scientists used a biomimetic approach to generate human hair follicles within human skin constructs (HSCs). They emulated human biology via the 3D organization of cells in the hair follicle micro-environment using 3D-printed molds. The actual paper is very technical.

The authors suggest that in the future, 3D bioprinting technology operating at a single cell resolution may permit the inclusion of many other cell types. This would include stem cells and melanocytes, which would generate hair cycling and pigmented hair follicles.

Some interesting quotes from the paper:

“We recently addressed this issue by 3D-spheroid culture of cells and thereby restored 22% of the hair inductive DPC gene signature. Subsequently, other groups also reported the use of this method to induce HFs in mice, albeit inefficiently. To enhance the efficiency of hair induction properties, in this study, we combined genetic and microenvironmental reprogramming strategies by overexpressing the MR gene Lef-1 in combination with spontaneous DPC spheroid formation in the HSCs, which resulted in 70% success rate of HF formation ex vivo, compared to only 19% with the empty vector-transfected DPCs.”

“Using 3D-printing approaches, our goal is to engineer HFs as follicular units and/or in desired patterns that can be integrated with surgical robots and facilitate effective hair transplantation surgery.”