Category Archives: 3D Bioprinting

Tissue Engineering of Hair Follicles using a Biomimetic Approach

In 2004, Aderans Research Institute filed a patent (granted in 2009) titled “Tissue engineered biomimetic hair follicle graft“. The invention entailed an improved scaffold that would mimic the architecture of the native hair follicle. The ultimate aim for this invention (after further improvements) would be hair multiplication. However, for a number of reasons, the much hyped Aderans liquidated its research institute in 2013.

In the above patent filing, the most cited author when it comes to reference material was Durham University (UK)’s Dr. Colin Jahoda. To be specific, 10 of his past papers are cited: ranging from this one from 1981 to a 2001 paper on trans-species hair growth induction. The industrious Dr. Jahoda has published numerous other major research papers since 2001, some of which I have covered on this blog in the past.

Biomimetic Engineering of Human Hair

Tissue Engineering of Hair
Engineered human hair growing on a mouse.

Several  days ago, a groundbreaking new research paper was published in Nature Communications (h/t reader “John Doe”). The title of this paper was: “Tissue engineering of human hair follicles using a biomimetic developmental approach”. Very similar to the title of the earlier mentioned patent.

Moreover, one of the main co-authors of this latest 2018 work is Durham University’s Dr. Colin Jahoda. The other authors are all researchers from US-based Columbia University’s Department of Dermatology, led by the renowned Dr. Angela Christiano.

The conclusion of this research is one that should make everyone enthused:

“The ability to regenerate an entire hair follicle from cultured human cells will have a transformative impact on the medical management of different types of alopecia, as well as chronic wounds, which represent major unmet medical needs.”

Note that this latest paper was submitted in May 2018, accepted in October 2018, and finally published in December 2018. So the Jahoda, Christiano et al. team’s current research is at least seven months ahead of what is described in the paper.

3D-Spheroid Cultures to 3D-Printed Molds

I have covered 3D-spheroids and related structures and scaffolds (to help brand new hair follicles grow from scratch) numerous times on this blog. This area of research has seemed to be the holy grail for scientists trying to succeed at hair multiplication. Just like DHT elimination and restarting Wnt/β-catenin signaling have been the holy grails when it comes to preventing further hair loss and regrowing existing miniaturized hair.

Numerous scientists such as Dr. Colin Jahoda and Dr. Takashi Tsuji have focused on research 3D-spheroids and 3D-culturing of dermal papilla cells to grow new hair follicles for many years. However, in this latest study, it seems like the scientists have turned there focus to 3D-printing (or 3D-bioprinting). They even give the name of the specific 3D printer that they used during this experimentation.

The Jahoda, Christian et. al team created 3D-printed hair follicle molds as the key component of the experiment. The scientists used a biomimetic approach to generate human hair follicles within human skin constructs (HSCs). They emulated human biology via the 3D organization of cells in the hair follicle micro-environment using 3D-printed molds. The actual paper is very technical.

Some interesting quotes from the paper:

“In the future, 3D-bioprinting technology operating at a single cell resolution may permit the inclusion of other cell types, such as stem cells and melanocytes, to generate cycling and pigmented HFs.”

“We recently addressed this issue by 3D-spheroid culture of cells and thereby restored 22% of the hair inductive DPC gene signature. Subsequently, other groups also reported the use of this method to induce HFs in mice, albeit inefficiently. To enhance the efficiency of hair induction properties, in this study, we combined genetic and microenvironmental reprogramming strategies by overexpressing the MR gene Lef-1 in combination with spontaneous DPC spheroid formation in the HSCs, which resulted in 70% success rate of HF formation ex vivo, compared to only 19% with the empty vector-transfected DPCs.”

“Using 3D-printing approaches, our goal is to engineer HFs as follicular units and/or in desired patterns that can be integrated with surgical robots and facilitate effective hair transplantation surgery.”

 

Poietis: 3D and 4D Bioprinting of Skin Tissue and Hair

Poietis is a relatively small 25-employee France based company that is active in the 3D and 4D laser bioprinting  sector. The company only commenced operations in 2014 and its main current focus is in skin tissue laser-assisted bioprinting for regenerative medicine applications. Moreover, the printed tissues can also be used in preclinical research applications as well as in evaluating the efficacy of various cosmetic products.

While there are numerous companies active in the tissue bioprinting sector, Poietis is unique in its use of lasers to build the tissue. Other companies typically use an extrusion process in which bio-ink is pushed through a nozzle.

Note that “4D bioprinting” is the next generation process of 3D bioprinting. Per one simple definition of 4D bioprinting, time is integrated with 3D bioprinting as the fourth dimension. A more complex definition can be found here.

Partnerships with L’Oréal and BASF

I first briefly covered Poietis on this blog in 2016 after the formation of their partnership with French cosmetics behemoth L’Oréal in order to 3D bioprint hair follicles. At the time, this was major news and was even covered by the BBC. Below is an image from a recent 2017 presentation on 3D printed hair by Poietis’ CEO Mr. Fabien Guillemot. The image was taken from L’Oréal’s Twitter account, which is a good sign that both partners are still pursuing the hair printing angle.

Poietis-L'Oreal Hair Partnership

Note that L’Oréal is also involved in a 3D printed skin tissue partnership with Organovo that I have covered on this blog in the past. And late last year, L’Oréal entered into a collaborative agreement with famous hair regeneration company Samumed in order to help develop the latter’s anti-wrinkle skin care topical product (h/t Mutruk). And of course L’Oréal is working on a cure for grey hair too.

In 2017, Poietis attracted further attention after expanding upon its existing 2015 partnership with German chemical producing powerhouse BASF.

BASF-PoietisThe goal of this partnership is to further improve upon the 3D laser-assisted bioprinted skin models that the companies have co-developed since 2015. These models will aid in evaluating cosmetic ingredients for skin care applications as well as possibly lead to an end in animal testing.

Poietis in 2018

This week, commentator “sets” made me aware that Poietis has started the new year with a big announcement. Several days ago, the the company announced that it had now launched its Poieskin® laser-assisted bioprinted skin model. Sales will officially start in April 2018. More here. Poietis plans to significantly increase its employee total this year, and hopefully the company will have more to say about hair before the end of the year.