Maksim Plikus and Zhengquan Yu

Yesterday, Reddit PLOS Science Wednesday AMA (Ask Me Anything) had a highly unusual session with two hair loss experts: Dr. Zhengquan Yu and Dr. Maksim Plikus.  Official citation link is now here.  While the title of the session only mentioned Mr. Yu, the two experts spent an equal amount of time answering questions. Earlier this year, Mr. Yu co-authored an important paper on the influence of microRNA (miR-22) in hair loss in mice that was published in PLOS.

Surprisingly, Mr. Yu is an associate professor at the China Agricultural University, one of the last places where you would expect to see research on hair loss.  I found it funny that somewhere in the AMA, Mr. Yu mentions the potential for creating hairy goats!! Several days ago Chinese scientists also announced the creation of genetically modified tiny pigs to keep as pets. One day I should fly over to China to see where all the secretive hair loss research is taking place.

While Mr. Plikus was not a co-author of the above paper, his responses on the Reddit were quite thorough and interesting.  I did not realize the huge amount of work that he has already done on hair loss related research.  Mr. Plikus is an assistant professor at the University of California Irvine.

Getting back to the Reddit AMA, some of the more interesting Q&A’s:

Question from “Wkbrdnjoe”: “Now that you guys have found positive results in mice, what is the next step? Testing humans?”

Answer from Maksim Plikus: “Mouse findings would certainly have to be validated in humans.  Currently, pilot testing on human hair follicles is possible using two experimental approaches: (i) organotypic hair follicle culture, and (ii) human-on-mouse xenografts.  Anagen phase hair follicles, including human follicles, can continue to grow in vitro under specialized culture conditions for approximately one week.  Human hair follicles grafted on immune compromised mice can grow for many months, imitating their normal, long-lasting anagen phase.  Both approaches are widely used in human hair follicle research.  Importantly, human hair follicles significantly differ from mouse in terms of signaling regulation.  For instance, while human hair follicles are highly sensitive to androgen signaling, mouse follicles are not. Therefore, mice can not recapitulate the pathogenesis of human androgenetic alopecia.”

Later on, Maksim Plikus responds to a lengthy question from famous hair loss forum member “Swooping” with the following:
“Your knowledge on androgenetic alopecia already appears to be pretty extensive.  As you can appreciate, it has a complex mechanism, therefore many if not all factors that you mentioned are probably involved in its pathogenesis.  What is important is to figure out which ones are upstream and which are downstream.  This would affect the therapeutic potential of the targets.  As I already mentioned in another reply, rodents and mice specifically, are not an appropriate model for studying androgenetic alopecia.  Mouse hair follicles grow very differently from human scalp follicles.  Mouse dorsal hairs grow only for about 2 weeks and attain 0.7-1cm in length.  This is equivalent to human scalp vellus hair.  Moreover, mouse follicles do not respond to androgens the same way human follicles do, and mice do not develop androgenetic alopecia in response to testosterone treatment.  This limited the research progress in androgenetic alopecia field.  However, we now have organotypic culture system and human-on-mouse xenograft model that can be used for studies on human follicles.”

And the most optimistic response from Maksim Plikus: “Recent studies showed that dormant hair follicles in patients with androgenetic alopecia maintain their key stem cell population. Please refer to this study: link.  This suggests that as long as the signaling mechanism of androgenetic alopecia pathogenesis can be interrupted, dormant scalp hair follicles can regrow.  For instance, this 2003 study showed that grafting of vellus human scalp follicles onto mouse partially restores their normal growth characteristics: link.”

Some quotes from Zhengquan Yu regarding his work on miR-22:

“Based on this study, miR-22 antimir could be an effective drug for hair loss.”

“miR-22 antagomir or other anti-miR-22 oligonucletides could be used to inhibit miR-22 function, which would prevent hair loss or maintain prolonged follicle life.”

“I think that our findings provide a new therapeutic target to treat hair loss in way of microRNA. The cause of hair loss is pretty complex, it is hard to develop effective treatment for all patients. However, inhibition of miR-22 could benefit a certain number of patients whose hair loss caused by increasing miR-22.”

— Some more detailed technical responses are in the AMA that I will not paste here, including many links to studies related to the complex genetics involved in MPB, plus discussions on qorum sensing, signaling and more.

19 thoughts on “Maksim Plikus and Zhengquan Yu”

  1. So basically, It is possible to completely restore a fully bald person. If hair follicles from bald scalp can form fully functional and even thicker hair follicles when transplanted on the back of SCID mice, then we can, transplant them back on the head. And go on strong anti-androgens, fully restore our hair.

  2. As I have mentioned before on multiple forums:

    We have to try to extract a miniaturizing hair and re implant it some where else.

    I wish there was a DIY kit for hair transplant i would have done it al ready by now and able to report back on my findings.

    1. We all want to do something to help bring thenext ttreatment to life. I wish someone would set up an account for follica as we could begin donating to try to get to the 2 million mark. That is what cotsarelas said he needs to release a treatment that is better then minox and propecia. Now im not made of money by any means dont get me wrong, but I bet there are some participants on these sites that could donate a a few grand without even noticing.

    2. Yeah, this is the way to go rather than bullshit body hair transplant. I have also mentioned someone really should try this.

      1. i wish we can get rid of the receptors of androgens in scalp hair follicle, we can then stop miniaturizing process, and regain hair?

  3. Tom, PURETECH who owns Follica, amassed more than 100.000.000 dollars just recently. They don’t need us to give them 2 million and frankly, and to be frank, that is ridiculous, I doubt Cotsarelis ever said that in the first place.


    “This report shows that miniaturized hair follicles of pattern alopecia can quickly regenerate once removed from the human scalp and can grow as well as or better than terminal follicles from the same individual.”

    This shows that the process can be reverted and this is very good,
    because we always thought that it was irreversible, once the hairs and follicles had been miniaturized they couldn’t grow big again, all was lost. But according to this study, it’s not, they can regain their normal size and functions once the conditions are favorable. This is awesome, really.

    1. Jullian, yes cots did say that, look it up. He also said something to the effect of 10 mil or so could cure it…dont quote me on the second number….and im not so sure 100k is going to be enough for puretech to do anything with mpb. Sad but true.

  4. I’m tired of reading all this crap with mice. They should only release studies that show proof and real results of hair growth on human mpb scalp. Everything else doesn’t apply.

  5. F*** the potential drugs. Admin we need to focus on stem cell research news. Not potential treatments that will just “bandage” the problem.

  6. Anything new that can regrow a couple Norwoods and stop further loss would be very much WELCOMED until stem cell treatment comes out. BTW I would stem cell treatment won’t be available at your doctor’s office for at least 10 to 15 years

  7. Yes ..shensedo Japan company they only showed little hairs on a mice only that…wake up…2020 its hard to believe for hairloss cure…domein admin going to change to hairloss cure 2030

  8. I do see a more potent treatment like bim, seti or samumed in the next couple years, hopefully sooner. If that can grow a Norwood 4 to a thick Norwood 2 then that would be a great step forward!

  9. The current baldness field is stupidly low on money, and this is coming from someone who knows what’s going on, no one actually funds translational research into baldness. Most of these papers that you see have been able to get grants by submitting a proposal not related to MPB at all.
    And honestly no cure is about to come anytime soon, I would say when are going to be able to cure diabetes type 2 or i don’t know alzheimer, then we will be able to treat MPB. I don’t see how this is not as complex a problem as those I mentioned.

Leave a Reply

Your email address will not be published. Required fields are marked *