Category Archives: Lactate

Lowry and Lowe

In 2017, I covered some important groundbreaking hair loss research from UCLA, led by scientists William Lowry and Heather Christofk.

These researchers discovered two topical compounds (RCGD423) and (UK5099) to regrow hair. Both drugs, via different mechanisms, increase the production of lactate. This in turn activates hair follicle stem cells and leads to increased and quicker hair growth. Dr. Lowry’s patent here. Note that RCGD423, activates the JAK-STAT signaling pathway.

Allergan, Pelage Pharmaceuticals and UCLA

Earlier today, reader “PinotQ” posted an important update on progress regarding these compounds’ further development. The compounds and technology have been exclusively licensed by UCLA to Pelage Pharmaceuticals, a startup company founded by Dr. Christofk, Dr. Lowry and Dr. Michael Jung.

Moreover, 100 percent of the shares in Pelage will be purchased by Allergan (Ireland) per an agreement. I have covered pharmaceutical giant Allergan many times on this blog in the past, and they are heavily invested in various new hair growth product technologies.

Rob Lowe has Taken Finasteride for 30 Years. Via his veins?

Rob Lowe Hair Finasteride
Rob Lowe Thick Hair Due to Finasteride?

Actor Rob Lowe has been in the news this week after insulting Prince Williams’ hair loss. Mr. Lowe is 55 years old, and claims that at the first sign of hair loss 30 years ago, he stared taking a hair loss drug. Per the quote below, he took it intravenously via his veins?!

Rob Lowe quote:

“The first glimmer that a single hair of mine was going to fall out, I was having that stuff mainlined into my (expletive) veins. And that’s what I did for the next 30 years.”

Prince William Hair Loss
Prince William Balding.

Almost everyone thinks that this drug that Rob Lowe took (and is maybe still taking) is Finasteride, usually given in the form of a pill. Donald Trump takes the same drug for his hair loss.

Dutasteride (Avodart) was not available 30 years ago (the younger Ashton Kutcher got lucky). I am not sure if it is a good idea to get Finasteride delivered through your veins, although Mr. Lowe has to this day maintained a very good head of hair and seems healthy.

UCLA vs USC in the Hair Loss World

University of California Los Angeles (UCLA) and University of Southern California (USC) are both based in Los Angeles, California in the USA. They have one of the most intense and historic rivalries in American college sports, especially in American football. The two campuses are separated by just 12 miles. In an amazing coincidence, the two most important hair loss research related discoveries in the world this month came out of these very two universities.

UCLA scientists find two new ways to activate hair follicle stem cells

For our purposes, the UCLA findings (published just today) seem to have the greatest significance. Scientists (led by Heather Christofk and William Lowry) have found two drugs that activate hair follicle stem cells in mice. Interestingly, both drugs are topical, and one (RCGD423) involves activating the JAK-STAT signaling pathway. No idea if this drug is connected to JAK inhibitors in any way, but that acronym keeps coming up regularly these days.

Both drugs involve increasing lactate production. Apparently, lactate production is strongly connected to hair follicle stem cell activation and hair cycling. In their initial research, the UCLA scientists blocked lactate production genetically in mice and found that this prevented hair follicle stem cell activation. Thereafter, they found that increasing lactate production genetically in mice accelerated hair follicle stem cell activation and increased the hair cycle.

RCGD423

The first drug, RCGD423, activates the JAK-STAT signaling pathway, which in turn leads to an increase in the production of lactate. This then activates hair follicle stem cells and also leads to quicker hair growth. UCLA holds the original patent for RCGD423, related to its ability to rejuvenate cartilage, and has filed a provisional patent for its use for hair growth purposes.

UK5099

The second drug, UK5099, blocks pyruvate (a glucose metabolite) from entering cell mitochondria. Interestingly, this forces an increase in the production of lactate in the hair follicle stem cells and therefore accelerates hair growth. UCLA has filed a provisional patent for using UK5099 for hair growth purposes.

Perhaps the most interesting quote from the earlier linked article summarizing these findings is: “I think we’ve only just begun to understand the critical role metabolism plays in hair growth and stem cells in general“. On this blog, I have covered the connection between fat cells (adipose tissue) and hair growth numerous times due to significant recent research in that area. So I am not surprised at all that metabolism is also important when it comes to hair growth.

It is, however, surprising that hair loss research has uncovered so many new distinct pathways and mechanisms in the past few years. All of these are unrelated to the tried and tested method of targeting dihydrotestosterone (DHT) reduction. This is great news, since we already know that even close to 100 percent reduction in DHT will not bring back long-lost hair for most people, plus often comes with side effects.

USC scientists restore hair generation in defunct adult cells

A team of scientists from USC (led by Dr. Mingxing Lei, with collaboration from others in China and the UK) have managed to restore hair regeneration properties in adult mice cells that had stopped growing hair. A non-scientist friendlier summary of this work can be found here. One of the co-authors of this paper is Dr. Cheng-Ming Chuong, who I covered on this blog before.

Using intensive video analysis and documentation, bioinformatics, and molecular screenings, the scientists figured out a:

Molecular “how to” guide for driving individual skin cells to self-organize into organoids that can produce hair.

Also:

In the future, this work can inspire a strategy for stimulating hair growth in patients with conditions ranging from alopecia to baldness.

Very unlikely to come to fruition anytime soon of course, but considering that some of the research collaborators are from China… perhaps things may move faster than I am guessing if they could shift their research and potential clinical trials to that country?