Category Archives: William Lowry

Interview Questions for Dr. Heather Christofk and Dr. William Lowry

A little over a month ago, a new groundbreaking study came out of UCLA that found that increasing lactate production in mice via the use of two different topical drugs led to increased hair growth both times (through hair stem cell activation). As I detailed in my post on that discovery, the two drugs are known as RCGD423 and UK5099. Both drugs act via entirely different mechanisms, and UCLA has filed separate patents for the use of each for hair growth purposes.

The scientists that led this research were Dr. Heather Christofk and Dr. William Lowry. Both run their own labs at UCLA, and the latter is listed as “post-doc” with the famous hair researcher Dr. Elaine Fuchs. Several weeks ago, a reader who wants to be known as “HLprevention” got in touch with Dr. Christofk, and then sent me her e-mail address and told me to get in touch with her. He thought that she would be willing to participate in an interview. I did as suggested, and Dr. Christofk has agreed to answer reader questions.

Please only post relevant questions, thoughts and concerns in this post, and continue to post unrelated comments in the last post.

UCLA has now been added to the list of research centers around the world working on a hair loss cure.

UCLA vs USC in the Hair Loss World

University of California Los Angeles (UCLA) and University of Southern California (USC) are both based in Los Angeles, California in the USA. They have one of the most intense and historic rivalries in American college sports, especially in American football. The two campuses are separated by just 12 miles. In an amazing coincidence, the two most important hair loss research related discoveries in the world this month came out of these very two universities.

UCLA scientists find two new ways to activate hair follicle stem cells

For our purposes, the UCLA findings (published just today) seem to have the greatest significance. Scientists (led by Heather Christofk and William Lowry) have found two drugs that activate hair follicle stem cells in mice. Interestingly, both drugs are topical, and one (RCGD423) involves activating the JAK-STAT signaling pathway. No idea if this drug is connected to JAK inhibitors in any way, but that acronym keeps coming up regularly these days.

Both drugs involve increasing lactate production. Apparently, lactate production is strongly connected to hair follicle stem cell activation and hair cycling. In their initial research, the UCLA scientists blocked lactate production genetically in mice and found that this prevented hair follicle stem cell activation. Thereafter, they found that increasing lactate production genetically in mice accelerated hair follicle stem cell activation and increased the hair cycle.

RCGD423

The first drug, RCGD423, activates the JAK-STAT signaling pathway, which in turn leads to an increase in the production of lactate. This then activates hair follicle stem cells and also leads to quicker hair growth. UCLA holds the original patent for RCGD423, related to its ability to rejuvenate cartilage, and has filed a provisional patent for its use for hair growth purposes.

UK5099

The second drug, UK5099, blocks pyruvate (a glucose metabolite) from entering cell mitochondria. Interestingly, this forces an increase in the production of lactate in the hair follicle stem cells and therefore accelerates hair growth. UCLA has filed a provisional patent for using UK5099 for hair growth purposes.

Perhaps the most interesting quote from the earlier linked article summarizing these findings is: “I think we’ve only just begun to understand the critical role metabolism plays in hair growth and stem cells in general“. On this blog, I have covered the connection between fat cells (adipose tissue) and hair growth numerous times due to significant recent research in that area. So I am not surprised at all that metabolism is also important when it comes to hair growth.

It is, however, surprising that hair loss research has uncovered so many new distinct pathways and mechanisms in the past few years. All of these are unrelated to the tried and tested method of targeting dihydrotestosterone (DHT) reduction. This is great news, since we already know that even close to 100 percent reduction in DHT will not bring back long-lost hair for most people, plus often comes with side effects.

USC scientists restore hair generation in defunct adult cells

A team of scientists from USC (led by Dr. Mingxing Lei, with collaboration from others in China and the UK) have managed to restore hair regeneration properties in adult mice cells that had stopped growing hair. A non-scientist friendlier summary of this work can be found here. One of the co-authors of this paper is Dr. Cheng-Ming Chuong, who I covered in 2016 in my post about quorum sensing (plucking) and hair growth.

Using intensive video analysis and documentation, bioinformatics, and molecular screenings, the scientists figured out a:

Molecular “how to” guide for driving individual skin cells to self-organize into organoids that can produce hair.

Also:

In the future, this work can inspire a strategy for stimulating hair growth in patients with conditions ranging from alopecia to baldness.

The end goal of this work is unlikely to come to fruition anytime soon of course. But considering that some of the research collaborators are from China, perhaps things may move faster if trials are conducted in that country.